Tissue Transglutaminase IgA ELISA Kit
Quantitative/qualitative assay for tissue transglutaminase IgA antibodies

For Research use Only. Not For Use In Diagnostic Procedures.

Catalog Number: 27-GD70
Size: 96 Wells
Version: 264-070-01 – ALPCO September 17, 2014
Intended use

The Tissue Transglutaminase IgA kit is a rapid ELISA method for the detection of circulating IgA antibodies to tissue transglutaminase (t-Tg). The anti-t-Tg IgA kit has been designed to use the same protocol as that used in the Genesis anti-gliadin IgG and IgA kits.

1. Explanation of the Test

Gluten-sensitive patients develop IgA and IgG antibodies to gliadin and to a component of the gut endomysium. Recently, tissue transglutaminase, a calcium-dependent enzyme that catalyzes the transamination of specific polypeptide-bound glutamine residues, has been identified as the unknown endomysial antigen. Interestingly, gliadin is the preferred substrate for this enzyme creating antigenic neo-epitopes, which are thought to generate the immune response in genetically susceptible individuals.

The immunological detection of IgA autoantibodies to t-Tg is a useful tool in the diagnosis and follow-up of celiac disease. The presence of IgA autoantibodies to t-Tg closely correlates with the detection of antiendomysial antibodies by indirect immunofluorescence. The ELISA method allows economical and rapid screening of large numbers of individuals for the presence of latent or subclinical disease.

It has been shown that antibodies of celiac patients react more strongly with the calcium-activated form of t-Tg. Therefore, microwells have been coated with purified, calcium-activated t-Tg.

2. Principle of the test

Diluted serum samples are incubated with calcium-activated guinea pig t-Tg immobilised on microtitre wells. After washing away unbound serum components, rabbit anti-human IgA conjugated to horseradish peroxidase is added to the wells, and this binds to surface-bound antibodies in the secondary incubation. Unbound conjugate is removed by washing, and a solution containing 3,3',5,5'-tetramethylbenzidine (TMB) and an enzyme substrate is added to trace specific antibody binding. Addition of Stop Solution terminates the reaction and provides the appropriate pH for colour development. The optical densities of the standards, controls and samples are measured using a microplate reader at 450nm.

3. Materials included in the kit

- **Microplate**: 96 wells in 12 X 8 break-apart strips, pre-coated with calcium-activated guinea pig t-Tg, with holder in a foil bag with desiccant.
- **Reagent 1**: Sample Diluent 150mM Tris-buffered saline, pH 7.2 with antimicrobial agent. 10ml, (blue), concentrate (x15).
- **Reagent 2**: Wash Buffer 100mM Tris-buffered saline with detergent, pH 7.2. 100ml, concentrate (x10).
- **Reagent 3**: Conjugate rabbit anti-human IgA conjugated to horseradish peroxidase in protein stabilising solution and antimicrobial agent, 12 ml, (yellow), ready to use.
- **Reagent 4**: TMB Substrate aqueous solution of TMB and hydrogen peroxide, 12 ml, ready to use.
- **Reagent 5**: Stop Solution 0.25M sulphuric acid, 12 ml, ready to use.
- **Standards**: 0, 5, 10, 25, 50 & 100 U/ml, 1ml of 10mM Tris-buffered saline containing human serum IgA antibodies to t-Tg, ready to use.
- **Positive control**: 1ml of 10mM Tris-buffered saline containing human serum antibodies to t-Tg, ready to use.
- **Negative control**: 1ml of 10mM Tris-buffered saline containing normal human serum, ready to use.
- **Instruments for use**

4. Other equipment required

1. Test tubes for dilution • graduated cylinder for preparing wash buffer • precision pipettes and disposable tips to deliver 10µl, 100µl, 1ml • EIA microplate washer or multi-channel pipette or wash bottle • distilled or de-ionized water • absorbent paper • EIA microplate reader with 450nm and optional 620nm reference filter. Alternatively, a suitable automated system may be used.
2. Instrumentation, whether manual or automated, should meet the following criteria: pipettes with better than 3% imprecision will give no carry over between pipetting steps; microplate washers should remove 99% of fluid; automated machines should minimize time between washing and adding the next reagent.

5. Precautions

5.1 Safety Precautions

1. Only experienced laboratory personnel should use this test. The test protocol must be followed strictly.
2. All human source material used in the preparation of standards and controls for this product have been tested and found negative for antibodies to HIV, HbsAg and HCV. No test method, however, can offer complete assurance that infectious agents are absent. Therefore, all reagents containing human material should be handled as if potentially infectious. Operators should wear gloves and protective clothing when handling any sera or serum based products.
3. Reagents of this kit contain antimicrobial agents and the TMB Substrate solution contains 3,3',5,5'-tetramethylbenzidine. Avoid contact with the skin and eyes. Rinse immediately with plenty of water if any contact occurs.
4. The Stop Solution contains 0.25M sulphuric acid. Avoid contact with skin and eyes. Rinse immediately with plenty of water if contact occurs.
5. Any liquid that has been brought into contact with potentially infectious material has to be discarded in a container with a disinfectant. Disposal must be performed in accordance with local legislation.

5.2 Technical Precautions

1. Strips and solutions should not be used if the foil bag is damaged or liquids have leaked.
2. Allow all reagents and the microplate to reach room temperature before use. Ensure that the microplate foil bag containing any unused strips is well sealed and contains the desiccant to avoid moisture. Store at 2 – 8°C after use.
3. The sample diluent X15 concentrate contains 0.09% sodium azide as preservative. Prepare sufficient working strength diluent for the assay run. However, if the working strength diluent is to be stored for more than 1 week, add sodium azide (0.9g/L). Store unused sample diluent concentrate and dilute sample diluent at 2 – 8°C.
4. When automating, consider excess volumes required for setting up the instrument and dead volume of robot pipette.
5. Include the Positive and Negative Control in every test run to monitor for reagent stability and correct assay performance.
6. Strictly observe the indicated incubation times and temperature.
7. Ensure that no cross-contamination occurs between wells. Keep all pipettes and other equipment used for Conjugate completely separate from the TMB Substrate reagent.
8. When pipetting Conjugate or TMB Substrate, aliquots for the required numbers of wells should be taken to avoid multiple entry of pipette tips into the reagent bottles. Never pour unused reagents back into the original bottles.
9. Do not allow microwells to dry between incubation steps.
10. Strictly follow the described wash procedure. Insufficient washing may cause high background signal.
11. Avoid direct sunlight and exposure to heat sources during all incubation steps.
12. Replace color-coded caps on their correct vials to avoid cross contamination
13. It is important to dispense all samples and controls into the wells without delay. Therefore ensure that all samples are ready to dispense.

6. Shelf life and storage conditions
On arrival, store the kit at 2 - 8°C. Once opened the kit is stable for 3 months (or until its expiry date if less than 3 months). Do not use kits beyond their expiry date. Do not freeze any kit component. The diluted Wash Buffer and Sample Diluent (see Technical Precautions) have a shelf life of 3 months if stored in a closed bottle at 2 – 8°C.

7. Specimen collection and storage
Serum or plasma samples may be used and should be stored at -20°C for long-term storage. Frozen samples must be mixed well after thawing and prior to testing. Repeated freezing and thawing can affect results. Addition of preservatives to the serum sample may adversely affect the results. Microbially contaminated, heat-treated or specimens containing particulate matter should not be used. Grossly haemolysed, icteric or lipaemic specimens should be avoided.

8. Preparation of reagents
1. Dilute the Sample Diluent (Reagent 1) 1:14 in distilled water to make sufficient buffer for the assay run e.g. add 10 ml sample diluent concentrate to 140 ml water.
2. Dilute the Wash Buffer (Reagent 2) 1: 9 in distilled water to make sufficient buffer for the assay run e.g. add 50ml wash buffer concentrate to 450ml water

9. Assay Procedure
1. Dilute samples 1:100 in diluted Sample Diluent (e.g. 10µl serum plus 1ml diluent).
2. Assemble the number of strips required for the assay.
3. For quantitative assays, dispense 100 µl of each Standard, the Negative and Positive Controls and the diluted samples into appropriate wells.
 For qualitative assays, dispense only the 10 U/ml Standard together with controls and samples.
4. Incubate for 30 minutes at room temperature.
5. After 30 minutes, decant or aspirate the well contents and wash the wells 3 times using automated washing or the manual wash procedure (see below). Careful washing is the key to good results. Do not allow the wells to dry out.
 Manual Wash Procedure:
 Empty the wells by inversion. Using a multi-channel pipette or wash bottle, fill the wells with Wash Buffer. Empty by inversion and blot the wells on absorbent paper. Repeat this wash process 2 more times.
6. Dispense 100µl of Conjugate (Reagent 3) into each well. Incubate the wells for 30 minutes at room temperature.
7. After 30 minutes, discard the well contents and carefully wash the wells 4 times with Wash Buffer. Ensure that the wells are empty but do not allow to dry out.
8. Using a repeating dispenser, rapidly dispense 100µl of TMB Substrate (Reagent 4) into each well. Incubate the plate for 10 minutes.
9. Add 100µl of Stop Solution (Reagent 5) to each well. To allow equal reaction times, the Stop Solution should be added to the wells in the same order as the TMB Substrate.
10. Read the optical density (OD) of each well at 450nm in a microplate reader within 10 minutes. A 620nm filter may be used as a reference wavelength.

10. Quality control
Quality control data is supplied on the lot-specific QC certificate included in the kit.

Controls are intended to monitor for substantial reagent failure.
Any well positive by spectrophotometer but without visible colour should be cleaned on the underside and re-read. If OD values below zero are observed, the wavelengths used should be verified, the reader re-blanked to air and the measurements repeated.

11. Interpretation of Results
Quantitative results
Plot the OD of each standard against its concentration and draw the best-fit curve through the points. Read the unknowns off this curve. Patients with active coeliac disease have values above 10 U/ml. During treatment, anti-Tg IgA results may fall to normal levels.

Ideally, each laboratory should establish its own normal range data.
Qualitative results
Samples with OD > than OD of 10 U/ml Standard are positive.
Samples with OD < than OD of 10 U/ml Standard are negative.

12. Limitations of the Procedure
1. It is important to know the IgA status by measuring the total serum IgA level, as there is a high incidence of IgA deficiency in celiac disease.
2. Results should be interpreted with caution in patients with Down’s syndrome and systemic autoimmune disease, given the known problem of false-positive anti-gliadin Ig serology.
3. Results of this assay should be interpreted in conjunction with findings.

13. Performance Characteristics
44 samples from patients with known anti-endomysial antibody status, as determined by indirect immunofluorescence, were tested in the anti-Tg ELISA. The performance characteristics of the assay, based on this study, are given in the table below.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100%</td>
</tr>
<tr>
<td>Specificity</td>
<td>97.1%</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>90.9%</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>100%</td>
</tr>
<tr>
<td>Accuracy</td>
<td>97.7%</td>
</tr>
</tbody>
</table>

14. Reproducibility
Within assay coefficient of variation < 12%
Between assay coefficient of variation < 12%

Method Summary
- Dilute sera 1:100 with Sample Diluent (Reagent 1)
- Dispense Standards, the Positive and Negative Controls and the diluted sample into the microplate wells
- Incubate for 30 minutes at room temperature
- Wash the wells three times
- Dispense 100µl of Conjugate (Reagent 3) into each well
- Incubate at room temperature for 30 minutes
- Wash the wells four times
- Add 100µl of TMB Substrate (Reagent 4) to each well
- Incubate at room temperature for 10 minutes
- Add 100µl Stop Solution (Reagent 5) to each well • Read the optical density at 450nm (single wavelength) or 450/620nm (dual wavelength).

Further reading
Dieterich, T et al (1997) Identification of tissue transglutaminase as the autoantigen of coeliac disease Nature Medicine, 3 (7) 797-801