Product information

User’s Manual

Prolactin rat ELISA

RUO

96 Wells
1. INTRODUCTION

1.1. INTENDED USE
The Prolactin rat ELISA is an enzyme-immunoassay for the quantitative measurement of prolactin in rat serum.

1.2. SUMMARY AND EXPLANATION
Rat prolactin (rPRL) is a single-chain polypeptide hormone of the rat anterior pituitary with a molecule mass of approximately 23,000. Prolactin from different species exhibits significant variations in the amino acid sequence. Rat prolactin differs from human prolactin at about 50 percent of all residues.

The secretion of rPRL from the pituitary is inhibited by hypothalamic prolactin-inhibitory factor (PIF). Although dopamine was long thought to be this PIF molecule, today it seems that there is a special peptide with prolactin-inhibiting activities.

The release of prolactin is certainly stimulated by different peptides, particularly thyrotropin releasing hormone (TRH) and vasoactive intestinal peptide (VIP). There is also evidence that rat posterior pituitary lobe contains a special prolactin releasing hormone.

The most important role of prolactin is stimulation of mammary gland growth and lactation. During pregnancy, blood prolactin levels climb, but the increases can differ enormously between rats. High prolactin levels are observed during lactation. Prolactin has a wide variety of other physiological actions, for example on the ovary. In the rat, prolactin has a luteotrophic effect which is not seen in many other species. Furthermore, prolactin is a stress hormone.

In rats, as in humans, prolactin exhibits a sleep-related diurnal variation. Peak values are seen in the late afternoon and nadir values in the morning.

Because of the variety of its actions, prolactin is one of the preferred hormones to monitor when testing the influence of new therapeutic agents and drugs on the endocrine system in the rat.

2. PRINCIPLE
The Prolactin rat ELISA kit is a solid phase enzyme immunometric assay (ELISA) in the microplate format, designed for the quantitative measurement of rat prolactin. The microplate is coated with a first monoclonal antibody specific for rat prolactin.

Calibrators and samples are pipetted into the antibody coated microplate. During a 2 hours incubation endogenous rat prolactin in the sample bind to the antibodies fixed on the inner surface of the wells. Non-reactive sample components are removed by a washing step.

Afterwards, a second polyclonal horseradish peroxidase-labeled antibody, directed against another epitope of the prolactin molecule, is added. During another 1 hour incubation, a sandwich complex consisting of the two antibodies and the rat prolactin is formed. An excess of enzyme conjugate is washed out.

A chromogenic substrate, TMB (3,3',5,5'-Tetra-Methyl-Benzidine), is added to all wells. During a 30 minutes incubation, the substrate is converted to a colored end product (blue) by the fixed enzyme. Enzyme reaction is stopped by dispensing of hydrochloric acid as stop solution (change from blue to yellow). The color intensity is direct proportional to the concentration of rat prolactin present in the sample.

The optical density of the color solution is measured with a microplate reader at 450 nm. Bi-chromatic measurement with a 600 - 690 nm reference filter is recommended.
3. WARNINGS AND PRECAUTIONS

All reagents of this test kit are strictly intended for veterinary research use only. Use by staff, who is specially informed and trained in methods which are carried out by use of immunoassays.

Please adhere strictly to the sequence of pipetting steps provided in this protocol.

All reagents should be stored refrigerated at 2 - 8 °C in their original container. Do not interchange kit components from different lots and assays. The expiration dates stated on the labels of the shipping container and all vials have to be observed. Do not use kit components beyond their expiration dates. Allow all kit components and specimen to reach room temperature (18 – 28 °C) prior to use and mix well.

During handling of all kit reagents, control and serum samples observe the existing legal regulations handling potentially infectious materials. Especially the following precautions should be taken:
- do not eat, drink or smoke
- do not pipette by mouth, use safety pipettes
- wear disposable gloves and avoid contact with kit reagents, control and sample material.

The test kit contains components of veterinary origin which were found negative for Hepatitis B surface antigen and HIV (Human Immunodeficiency Virus). Nevertheless, for products derived from human or animal source it cannot be completely guaranteed, that they do not contain the above mentioned, others and not yet known or not diagnosticable pathogens. Sample material of patients (for example serum or plasma) normally used in laboratory determinations are always classified as potentially infectious. According to the same safety guides, kit reagents and control material are to be used. Samples of risk patients should be specially labeled and if necessary be handled in safety work benches (lamina flow bench).

The assay reagents contain against microbial growth preservation substances, avoid contact with skin and/or mucous membranes.

Avoid contact with the TMB (3,3',5,5'-Tetra-Methyl-Benzidine) substrate solution containing peroxide. If it comes into contact with skin, wash thoroughly with water. Avoid contact with any easily oxidized materials. Extreme temperature changes may cause spontaneous decay of the peroxide. Avoid the contact with the stop solution containing acid. By skin contact, wash thoroughly with water. All instrumentation employed to dispense the stop solution should be thoroughly cleaned after use.
4. REAGENTS

4.1. REAGENTS PROVIDED

1. **Divisible microplate, 12 x 8 (break apart) strips with 96 wells, ready to use**
 Removable wells coated with a monoclonal anti-rat prolactin antibody.

2. **Rat Prolactin Master Calibrator, 1 vial, 80 ng, lyophilized,**
 in serum/buffer matrix containing highly purified rat prolactin,
 For reconstitution see “Reagent preparation”.

3. **Rat Prolactin Calibrator/Sample Diluent, 1 vial, 6 ml, ready to use**
 rat prolactin free

4. **Enzyme-Labeled Rat Prolactin Antibody, 1 vial, 22 ml, red, ready to use**
 containing horseradish peroxidase-labeled polyclonal anti rat prolactin antibody in a buffered solution with preservative

5. **Rat Prolactin Sample Buffer, 1 vial, 6 ml, yellow, ready to use**

6. **TMB-Substrate Solution, 1 vial, 22 ml, ready to use**
 3,3',5,5'-Tetra-Methyl-Benzidine in buffered peroxide solution

7. **Stop Solution, 1 vial, 7 ml, ready to use**
 containing 2 M hydrochloric acid

8. **Wash Buffer Concentrate, 1 vial, 50 ml, 10 x concentrated,**
 See “Reagent preparation”.

4.2. MATERIALS REQUIRED BUT NOT PROVIDED

- Microplate reader capable for endpoint measurements at 450 nm (optional reference filter in the range of 600 - 690 nm)
- Vortex mixer
- Microplate mixer operating at 900 rpm
- Distilled or deionized water
- Graduated cylinder for 500 ml
- Plastic containers for storage of the wash solution
- Adjustable pipette for up to 1000 µl
- Dispenser or repeatable pipet for 25 µl, 50 µl, and 200 µl

4.3. REAGENT PREPARATION

Calibrators:
Reconstitute lyophilized Rat Prolactin Master Calibrator with 1 ml dest. water 30 min. before use (end concentration of 80 ng/ml). Make a dilution series with Calibrator/Sample Diluent to get calibrators with 80, 40, 20, 10 and 5 ng/ml.

Wash Buffer:
Dilute with 450 ml dist. water to a final volume of 500 ml.
4.4. STORAGE CONDITIONS
When stored at 2°C to 8°C all reagents are stable until expiration date or 30 days after opening.

The Stop Solution is stable up to 2 months after opening or until the expiration date.

The Wash Buffer is stable for 3 months after dilution or until the expiration date.

Store Calibrators refrigerated, they will be stable at 2°C to 8°C for 7 days after reconstitution or until expiration date. For longer storage freeze at -20°C.

Protect Divisible Microplate from moisture. Store together with desiccant and carefully sealed in the plastic bag.

Protect TMB-Substrate Solution from light.

5. SPECIMEN
For determination of rat prolactin serum is the preferred sample matrix. The procedure calls for 25 µl matrix per well.

Prolactin is one of the most sensitive stress hormones of the rat. Blood collection should therefore be as stress-free as possible.

The samples may be stored refrigerated at 2 – 8 °C for one week, or up to 2 months frozen at –20 °C. To avoid repeated thawing and freezing the samples should be aliquoted.

Samples expected to contain rat prolactin concentrations higher than the highest calibrator (80 ng/ml) should be diluted with the zero calibrator before assay. The additional dilution step has to be taken into account for the calculation of the results.

6. ASSAY PROCEDURE

6.1. GENERAL REMARKS
- Do not interchange components of different lots.
- All components should be at room temperature (18 – 28 °C) before use.
- All components of this test kit, supplied as concentrate should be diluted to their final concentration at least 30 minutes prior to use. Mix well, but prevent of foam formation.
- Use a disposable-tip micropipette to dispense serum samples. Pipet directly to the bottom of the wells. Change the tip between samples, to avoid carryover contamination.
- For internal quality control we suggest to use Rat Control Set coded 55-DEV99RC. For more information please contact ALPCO.
6.2. ASSAY PROCEDURE

1. Preparation of calibrators:
 Label four tubes: E (40 ng/ml), D (20 ng/ml), C (10 ng/ml) and B (5 ng/ml). Pipet 0.1 ml of the Calibrator/Sample Diluent into all tubes. Pipet 0.1 ml of the reconstituted Rat Prolactin Master Calibrator into tube E (40 ng/ml), and mix thoroughly. Repeat this process successively to complete the 2-fold dilution series. The reconstituted Rat Prolactin Calibrator will serve as the highest calibrator F (80 ng/ml). Use the Rat Prolactin Calibrator/Sample Diluent as the zero Calibrator A (0 ng/ml).

2. Pipet 25 µl of each calibrator, control and patient sample into the wells prepared.

3. Add 50 µl of Rat Prolactin Sample Buffer to every well.

4. Shake for 2 hours at room temperature (18 - 28 °C). The mixer should be set at > 900 rpm.

5. Discard the content of the wells and wash 4 times with 300 µl buffered wash solution. Remove as much wash solution as possible by beating the microplate carefully.

6. Add 200 µl of Enzyme-Labeled Anti-Rat Prolactin Antibody to all wells.

7. Shake again for 1 hour.

8. Discard the content of the wells and wash 4 times with 300 µl buffered wash solution. Remove as much wash solution as possible by beating the microplate carefully.

9. Add 200 µl of liquid TMB/Substrate Solution to all wells.

10. Incubate without shaking for 30 minutes in the dark.

11. Add 50 µl of Stop Solution to each well and mix carefully.

12. Read the optical density at 450 nm. Bi-chromatic measurement with a reference at 600-690 nm is recommended.

The developed color is stable for at least 30 minutes. Read optical densities during this time.

6.3. CALCULATION OF RESULTS

For evaluation of rat prolactin a 4-Parameter-Fit with lin-log coordinates for optical density (linear scale) and concentration (logarithmic scale) is recommended.

Spline approximation with lin-log coordinates and log-log coordinates are also suitable.
6.3.1. **EXAMPLE OF TYPICAL CALIBRATOR CURVE**

The figure below shows typical results for Prolactin rat ELISA test kits. These data are intended for illustration only and should not be used to calculate results from another run.

<table>
<thead>
<tr>
<th>Calibrators</th>
<th>Replicate (OD)</th>
<th>Mean (OD)</th>
<th>Binding (%)</th>
<th>Rat Prolactin (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.079</td>
<td>0.073</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.189</td>
<td>0.179</td>
<td>6.9</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>0.328</td>
<td>0.342</td>
<td>12.7</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>0.766</td>
<td>0.796</td>
<td>29.7</td>
<td>20</td>
</tr>
<tr>
<td>E</td>
<td>1.591</td>
<td>1.635</td>
<td>61.0</td>
<td>40</td>
</tr>
<tr>
<td>F</td>
<td>2.588</td>
<td>2.677</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unknown Samples</th>
<th>Group</th>
<th>Replicate (OD)</th>
<th>Mean (OD)</th>
<th>Binding (%)</th>
<th>Rat Prolactin (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 001</td>
<td>A</td>
<td>0.318</td>
<td>0.324</td>
<td>12.1</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X 002</td>
<td>B</td>
<td>0.577</td>
<td>0.590</td>
<td>22.0</td>
<td>16.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.603</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X 003</td>
<td>C</td>
<td>1.733</td>
<td>1.716</td>
<td>64.1</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.698</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. **EXPECTED NORMAL VALUES**

In a reference range study rat serum samples were collected in the morning between 8 and 9 a.m. and in the evening between 5 and 6 p.m. Diurnal variations have not been observed. Analysis by the Prolactin rat ELISA kit yielded the following results:

<table>
<thead>
<tr>
<th>Group</th>
<th>Absolute Range (ng/ml)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal female rats</td>
<td>nd - 17.9</td>
<td>15</td>
</tr>
<tr>
<td>Normal male rats</td>
<td>nd- 23.4</td>
<td>10</td>
</tr>
</tbody>
</table>

nd = nondetectable

Because of differences which may exist between laboratories with respect of population, laboratory technique and selection of reference groups, it is recommended that each laboratory establishes its own normal and pathological ranges of rat prolactin. The reference ranges should be regarded as guidelines only.
8. PERFORMANCE CHARACTERISTICS

8.1. ANALYTICAL SENSITIVITY
The lower detection limit for rat prolactin is approximately 0.6 ng/ml.

8.2. SPECIFICITY
The antibodies in the Prolactin rat ELISA procedure are highly specific for rat prolactin. Detectable crossreactivities to other hormones that may be present in serum samples are not known.

The following substances were tested:

<table>
<thead>
<tr>
<th></th>
<th>added quantity (ng/ml)</th>
<th>measured concentration (ng/ml)</th>
<th>cross-reactivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat TSH</td>
<td>5,000</td>
<td>1.5</td>
<td>0.03</td>
</tr>
<tr>
<td>Rat FSH</td>
<td>10,000</td>
<td>5.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Rat LH</td>
<td>5,000</td>
<td>nd</td>
<td>-</td>
</tr>
<tr>
<td>Rat GH</td>
<td>4,000</td>
<td>nd</td>
<td>-</td>
</tr>
</tbody>
</table>

8.3. REPRODUCIBILITY
Statistics for Coefficients of variation (CV) were calculated for each of three samples from the results of 20 pairs of wells in a single run for Intra-Assay precision and the Inter-Assay precision was calculated from the results of 14 different runs of three samples:

<table>
<thead>
<tr>
<th>Serum No</th>
<th>Mean Error! (ng/ml)</th>
<th>SD ± s (ng/ml)</th>
<th>CK (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Assay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.6</td>
<td>0.20</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>19.6</td>
<td>0.77</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>33.0</td>
<td>1.80</td>
<td>5.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serum No</th>
<th>Mean Error! (ng/ml)</th>
<th>SD ± s (ng/ml)</th>
<th>CK (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-Assay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.5</td>
<td>0.28</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>20.5</td>
<td>0.71</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>33.4</td>
<td>1.48</td>
<td>4.4</td>
</tr>
</tbody>
</table>
8.4. **RECOVERY**

Three spiking solutions were prepared using the Sample Diluent, to represent the 600, 800 and 1,000 ng/ml, respectively. A 50 µl aliquot of each solution (A, B, C) was spiked into 950 µl aliquots of two different rat serum samples, for a spiking ratio of 1 to 20, leaving the serum matrix of the spiked samples relatively intact. All samples were then assayed by the Prolactin rat ELISA procedure.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Diluted Solution</th>
<th>measured Concentration [ng/ml]</th>
<th>expected Concentration [ng/ml]</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>26.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>54.7</td>
<td>56.1</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>66.6</td>
<td>66.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>79.9</td>
<td>76.1</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>24.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>52.6</td>
<td>54.2</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>67.5</td>
<td>64.2</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>81.1</td>
<td>74.2</td>
<td>91</td>
</tr>
</tbody>
</table>

8.5. **LINEARITY**

In dilution experiments sera with high rat prolactin concentrations were diluted with sample diluent and assayed in the Prolactin rat ELISA kit. The assay showed linearity over the full measuring range.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dilution Factor</th>
<th>measured Concentration [ng/ml]</th>
<th>expected Concentration [ng/ml]</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 in 8</td>
<td>20.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4 in 8</td>
<td>10.6</td>
<td>10.5</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>2 in 8</td>
<td>5.9</td>
<td>5.2</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>3.0</td>
<td>2.6</td>
<td>115</td>
</tr>
<tr>
<td>2</td>
<td>8 in 8</td>
<td>34.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4 in 8</td>
<td>16.7</td>
<td>17.4</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>2 in 8</td>
<td>9.0</td>
<td>8.7</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>1 in 8</td>
<td>4.5</td>
<td>4.3</td>
<td>105</td>
</tr>
</tbody>
</table>

9. **LIMITATIONS OF PROCEDURE**

Effect of Anticoagulants

To determine whether anticoagulants interfere with the assay, blood was collected from 30 rats into plain and EDTA vacutainer tubes. All samples were assayed by the Prolactin rat ELISA procedure, with the following results.

\[(\text{EDTA}) = 1.05 (\text{Serum}) - 9.3 \text{ ng/ml} \quad r = 0.978\]

Means: 3.68 ng/ml (Serum)
3.78 ng/ml (EDTA)

A limited study with citrated and heparinized plasma show comparable results to EDTA plasma.

"**High-Dose Hook**"-Effect

Rat sera containing up to 300 ng/ml Prolactin were measured with the Prolactin rat ELISA assay. A High-Dose Hook effect could not be observed.
10. REFERENCES

1. Leung, F. C., Russel, S. M.; Nicoll, C. S.
 Relationship between bioassay and radioimmunoassay estimates of prolactin in rat serum.

 Purification of rat prolactin: development of an homologous radioimmunological assay
 and comparison with the NIAMDD system.

3. Beach, J. E., Miles, D. J., Lukes, Y. G., Vigersky, R. A.
 Microplate solid-phase radioimmunoassay for rat prolactin.

 Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17ß throughout
 the 4-day estrous cycle of the rat.
 Endocrinology 1974; 94: 1704 - 8.

 Response of serum prolactin to catechol estrogen in the immature rat.

6. Wong, C. C.
 Endogene und exogene Einflüsse auf die Variabilität der Hormonausschüttung bei der Ratte (Endogenous and exogenous influences on the variability of hormone release in the rat).

 Effects of starvation in rats on serum levels of FSH, LH, TSH, growth hormone and prolactin: response to LH-releasing hormone and thyrotropin-releasing hormone.

8. Haggi, E., Aoki, A.
 Prolactin content in rat pituitary gland. RIA of prolactin after different extraction procedures.

9. Reichel, J.
 Wirkungen gonadaler Steroide auf die adeno-hypophysären Thyreotropin-Releasing-
 Hormon-Rezeptoren, den Prolactinerumspiegel und die hormonelle Hypophysen-
 Schilddrüsen-Achse der Ratte (Effects of gonadal steroids on the pituitary TRH-receptors, the serum prolactin concentrations and the pituitary-thyroid axis in the rat)
 Thesis.
 Lübeck (Germany): University of Lübeck, 1990.

10. Moishige, W. K., Pepe, G. J., Rothschild, I.
 Serum LH, prolactin and progesterone levels during pregnancy in the rat.
11. SHORT INSTRUCTION

(all sample sizes given in µl)

<table>
<thead>
<tr>
<th>Steps</th>
<th>MP Well</th>
<th>ng/ml</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Pipet</td>
<td>Calibrator</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Pipet</td>
<td>Sample</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pipet</td>
<td>Rat Prolactin Sample Buffer</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Incubate for 2 hours at RT on a shaker

Decant

Wash 4x with 300 µl of buffered wash solution

Pipet

Enzyme-labeled Rat Prolactin Ab | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

Incubate for 1 hour at RT on a shaker

Decant

Wash 4x with 300 µl of buffered wash solution

Pipet

Substrate Solution | 200 | 200 | 200 | 200 | 200 | 200 | 200 |

Incubate for 30 min at RT in the dark

Pipet

Stop Solution | 50 | 50 | 50 | 50 | 50 | 50 | 50 |

Read at \(\lambda = 450 \) nm